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Introduction

The stable microbial diversity of the pig intes-
tine can promote the absorption of nutrients, prevent 
the occurrence of diseases, and promote the growth 
and development of pigs (Bergen, 2015). There is 
a close correlation between the composition of in-
testinal microflora and intestinal development, im-
mune characteristics, glucose and lipid metabolism 
and meat quality (Choy et al., 2014). The intesti-
nal microbiota plays an important role in nutrient  

digestion. For example, the abundances of Anaer-
ofustis and Robinsoniella in sow faecal samples 
were positively correlated with the apparent crude 
fibre digestibility (Niu et al., 2019). Clostridium 
is associated with dietary fibre metabolism, and  
Turicibacter is correlated with butyric acid (Woting 
et al., 2014). Pig breed is also an important factor 
affecting intestinal microbial diversity. Yang et al. 
(2014) showed that there were differences in intesti-
nal microflora among different breeds of pigs. There 
is a high similarity among the intestinal microbes
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ABSTRACT. Intestinal microbiota plays an important role in nutrition, metabo-
lism and immunity in all mammals. It is comprised of diverse populations of 
bacteria and other microorganisms whose abundances are impacted by both 
environmental and host genetic factors. However, the understandings of the in-
testinal microbiota in different pig breeds remain largely undefined. To examine 
the differences in intestinal microflora between two pig breeds with different ge-
netic backgrounds under the same environment, 16S rRNA gene amplification 
and sequencing were performed to investigate the structural composition and 
potential functions of microbial communities in rectum and caecum of Erhualian 
and Sushan pigs. The results revealed that the diversity of intestinal microflora 
in two pig breeds was similar, but the abundance of specific intestinal microflora 
was different. At the phylum level, the dominant bacteria in caecum and rectum 
of Erhualian and Sushan pigs were Firmicutes, Acidobacteria and Bacteroides, 
but their expression abundance was different. Firmicutes and Bacteroidetes in 
Erhualian pigs were higher than those in Sushan pigs. At the genus level, Lacto-
bacillus was the most abundant in caecum of Sushan pigs (6.83%) and rectum 
of Erhualian pigs (9.61%), while Ruminococcaceae UCG-005 were dominant in 
caecum of Erhualian pigs (10.89%) and Streptococcus in rectum of Sushan pigs 
(24.89%). This study further confirmed the existence of specific microbial com-
munity diversity and abundance in different pig breeds. The microbial commu-
nity diversity and abundance in Erhualian and Sushan pigs were closely related 
to pig fat deposition and nutrient absorption.
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of Landrace, Yorkshire and Duroc pigs. However, 
Bama mini, Erhualian and Xiaomeishan pigs from 
Chinese local breeds have high similarity when 
it comes to microorganisms presence and type. 
Diao et al. (2016) showed that intestinal microbial 
abundances in Rongchang, Tibetan and Landrace 
pigs were different. Tibetan and Rongchang pigs had 
a higher proportion of Firmicutes and Spirochaetes 
and a lower proportion of Bacteroidetes than Landrace 
pigs, and the proportion of Spirochaetes in Tibetan 
pigs was significantly higher than that in Rongchang 
pigs. Compared with Tibetan pigs, Landrace and 
Rongchang pigs contained a higher proportion of 
Tenericutes and a lower proportion of Fibrobacteres 
and Elusimicrobia. The above results indicated that 
the composition of intestinal microorganisms in pigs 
was probably related to the host’s metabolic type, 
feeding characteristics and immune function.

Erhualian pig is a well-known local pig breed 
in China, with strong lactation, good motherhood, 
a high feeding rate, early sexual maturity, especially 
high resistance to rough feeding and a docile tempera-
ment. Sushan pig, as a new hybrid breed of Erhualian 
and Yorkshire pigs, has the advantages of delicious 
meat and a certain level of resistance to rough feed-
ing. In pig production, the tolerance to rough feeding 
and crude fibre of Sushan pigs was found to be lower 
than that of Erhualian pigs, and the demand of Sushan 
pigs for nutrients in feed is higher than that of Erhual-
ian pigs. In order to study the difference of tolerance 
to rough feeding and crude fibre between Erhualian 
and Sushan pigs, characterization and comparative 
analysis were performed to investigate the structur-
al composition and potential functions of microbial 
communities in these two breeds. This study provides 
a powerful theoretical basis on the potential roles of 
intestinal microbial communities in resistance to 
rough feeding, nutrition metabolism and crude fibre 
digestion for safe and healthy pork production.

Material and methods 
This experiment was reviewed and approved 

by the Institutional Animal Ethics Committee from 
the Research Integrity and Ethics Administration of 
Jiangsu Academy of Agricultural Sciences, China.

Animals and sampling
Erhualian and Sushan pigs (five barrows each) 

were fed at the Sushan Pig Breeding Farm (Nanjing, 
China) under the same conditions and provided with 
standard diets in accordance with the feeding standard 
of swine (NY/T 65-2004) issued by the Ministry 

of Agriculture of the People’s Republic of China  
(Table 1). At the rapid growth stage (175th day of age), 
the adult Erhualian (75 kg) and Sushan (90 kg) pigs 
were slaughtered according to standard procedures. 
The pigs were dissected for collecting the intestinal 
contents of the rectum and caecum. The samples 
were kept at −80 °C for 16S rRNA gene analysis.

DNA extraction and PCR amplification
Microbial DNA was extracted from rectal 

and caecal samples using an E.Z.N.A.® soil DNA 
Kit (Omega Bio-tek, Norcross, GA, USA) accord-
ing to the manufacturer’s protocols. The final DNA 
concentration and purification were determined 
by a NanoDrop 2000 UV-Vis spectrophotometer  
(Thermo Scientific, Waltham, MA, USA), and the 
DNA quality was checked by 1% agarose gel elec-
trophoresis. The V3/V4 hypervariable regions of the 
bacterial 16S rRNA gene were amplified using prim-
ers 341F (5’-CCTAYGGGRBGCASCAG-3’) and 
806R (5’-GGACTACNNGGGTATCTAAT-3’) based 
on a thermocycler PCR system (GeneAmp PCR 
System 9700, Applied Biosystem, Foster City, CA, 
USA). The PCRs were conducted with the follow-
ing program: initial denaturation at 94 °C for 4 min; 
94 °C denaturation for 30 s, 50 °C annealing for 45 s 
and 72 °C extension for 30 s, repeated for 25 cycles; 

Table 1. Composition and nutrient levels of basal diets (air-dry basis), %
Indices Content
Ingredients

maize 61.00
soyabean meal  9.00
wheat bran 27.50
CaHPO4  0.50
limestone  0.50
NaCl  0.50
premix1  1.00

Nutrient levels2

DM 85.43
ash  6.24
CP 15.41
EE  4.31
CF  3.02
DE, MJ /kg 18.32
Ca  0.54
P  0.47

DM – dry matter, CP – crude protein, EE – ether exract, CF – crude 
fibre, DE – digestible energy; 1 the premix provided the following per kg 
of diets: mg: Fe 100, Zn 100, Mn 30, Cu 10, Se 0.3, I 0.5, vit. K 3.0, 
vit. B1 2.0, vit. B2 6.0, vit. B6 3.0, nicotinic acid 30, pantothenic acid 30, 
folic acid 1.0, biotin 0.2, choline 300; IU: vit. A 8 000, vit. D 31 000,  
vit. E 20; μg: vit. B12 30; 2 DE was calculated, while the other values 
were calculated
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and final extension at 72 °C  for 5 min. PCRs were 
performed in triplicate with 20 μl of a mixture con-
taining 4 μl of 5× FastPfu Buffer (Transgen Biotech, 
Beijing, China), 2 μl of 2.5 mM dNTPs, 0.8 μl of 
each primer (5 μm), 0.4 μl of FastPfu Polymerase, 
and 10 ng of template DNA. The final PCR products 
were extracted from a 2% agarose gel, further puri-
fied with an AxyPrep DNA Gel Extraction Kit (Axy-
gen Biosciences, Union City, CA, USA), and quanti-
fied using a QuantiFluor ™-ST (Promega, Madison, 
WI, USA) according to the manufacturer’s protocol.

Illumina MiSeq sequencing
The purified amplicons were pooled in equimo-

lar amounts and paired-end sequenced (2 ×300 bp) 
on an Illumina MiSeq platform (Illumina, San Diego, 
CA, USA) according to the standard protocols of the  
Majorbio Bio-Pharm Technology Co., Ltd. (Shang-
hai, China). The raw reads were deposited into the 
NCBI Sequence Read Archive (SRA) database  
(Accession Number: SRP279885).

Data processing
Raw FastQ files were demultiplexed, quality-

filtered using a fastp(version 0.20.0, https://github.
com/OpenGene/fastp; Chen et al., 2018), and merged 
using a FLASH (version 1.2.7, http://ccb.jhu.edu/
software/FLASH; Magoč and Salzberg, 2011) with 
the following criteria: (i) the reads were truncated 
at any site receiving an average quality score <20 
over a 50 bp sliding window; (ii) primers were ac-
curately matched, allowing 2 nucleotides to be mis-
matched, and reads containing ambiguous bases 
were removed; and (iii) sequences whose overlap 
was longer than 10 bp were merged according to 
their overlap sequence.

Operational taxonomic units (OTUs) were clus-
tered with a 97% similarity cut-off using a UPARSE 
(version 7.1, http://drive5.com/uparse; Edgar, 2013), 
and chimeric sequences were identified and removed 
using a UCHIME (version 4.2.40, http://www.drive5.
com/uchime). The taxonomy of each 16S rRNA 
gene sequence was analysed with an RDP Classifier 
algorithm (http://rdp.cme.msu.edu) against the  
SILVA (SSU123) 16S rRNA database at a confi-
dence threshold of 70%.

Data analysis
Community diversity at the inter- and intragroup 

levels was assessed using a combination of bias Sobs, 
Shannon diversity indices, Simpson’s diversity index, 
the abundance-based coverage estimator (ACE), 
the Chao1 richness estimator and the coverage 
percentage. Based on the OTU expression profile, 

the alpha diversity of different samples at the OTU 
level was calculated. All of the aforementioned 
analyses were conducted using a MOTHUR (Kemp 
and Aller, 2004; Schloss et al., 2009). The principal 
component analysis (PCA) was performed based on 
the expression profile of OTUs at the taxonomic level 
using the R package (R Core Team, 2020). To identify 
differentially abundant taxa in multiple segments 
within different pig breeds, the linear discriminant 
analysis (LDA) effect size (LEFse) method was 
applied (Segata et al., 2011). To identify differentially 
abundant microbial taxa in the same segment among 
samples of different pig breeds a Metastats was used 
(White et al., 2009). Phylogenetic investigation of 
communities by reconstruction of unobserved states 
(PICRUS) (Langille et al., 2013) was applied to 
predict the functional enrichment of the microbial 
communities against the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database (Du et al., 
2014). Correlation coefficients of the pathway 
enrichment for the samples of different pig breeds 
were calculated by the Spearman method. The 
R package 3.3.1, edgeR (Robinson et al., 2010), 
was used to determine differentiating molecular 
functions and pathways with a threshold of Log2 
fold change > 2 and FDR < 0.01. Volcano plots 
and heatmaps were generated for the differentiating 
pathways.

Results

Species annotation and assessment
OTU analysis. In total 1 346 719 tags were ob-

tained from all samples, covering 560 597 784 base 
pairs (Table 2). The average tag count per sample 
was 67 336, and 1397 OTUs at 97% identity were 
obtained, with the number of OTUs ranging from 
523 to 1395 per sample. Coverage was determined 
to be greater than 95% in each sample. The sparse 
curve showed an obvious asymptote, which indi-
cated that the sampling of the microbial community 
was close to complete and the sequencing depth was 
sufficient for diversity evaluation.

Alpha diversity analysis. The results of Sobs 
and Chao1 indices showed that the relative abun-
dances of bacteria in rectum were higher than those 
in caecum, and the relative abundances of bacteria 
in rectum and caecum of Sushan pigs were higher 
than those of Erhualian pigs. The results of Shannon 
and Simpson indices showed that the bacterial com-
munity diversity of rectum was higher than that of 
caecum in Erhualian pigs, while an opposite result 
was found in Sushan pigs (Table 3).
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Species composition analysis. Figure 1 reveals 
that 1397 different OTUs were distributed in rectum 
and caecum of Erhualian and Sushan pigs. In total 
842 OTUs were shared by all of the samples, and 
the number of unique OTUs in rectum of Sushan 
pigs was the highest. The microbial populations of 
Lactobacillus (9.61%) were the largest in rectum 

of Erhualian pigs (Figure 2A), Ruminococcaceae  
UCG-005 (10.89%) in caecum of Erhualian pigs 
(Figure 2B), Streptococcus (24.89%) in rectum of 
Sushan pigs (Figure 2C) and Lactobacillus (6.83%) 
in caecum of Sushan pigs (Figure 2D), respectively. 
Among the dominant bacteria, Lachnospiraceae 
XPB1014 was the unique species identified in rec-
tum of Erhualian pigs; Coprococcus, Phascolarcto-
bacterium and Lachnospiraceae NK4A136 in cae-
cum of Erhualian pigs; Fusobacterium in caecum of 
Sushan pigs; and Prevotella and Ruminococcaceae 
NK4A214 in rectum of Sushan pigs, respectively.  
Alloprevotella, Romboutsia, Christensenellaceae R-7 
and Rikenellaceae RC9 were among the dominant 
bacteria in caecum of Erhualian and Sushan pigs. 
Prevotellaceae UCG-003 was not found in rectum 
of Erhualian pigs, while Prevotellaceae NK3B31 
was not found in caecum of this breed. Clostridium 
was not in the dominant bacteria found in caecum of  
Sushan pigs.

Species difference analysis. The significance 
of microbial compositional differences in caecum 
and rectum of Erhualian and Sushan pigs was test-
ed (Figure 3). The results showed that four genera 
were significantly different in caecum of Erhualian 
and Sushan pigs, and Ruminococcaceae UCG-005 
and Christensenellaceae R-7 exhibited highly sig-
nificant differences (Figure 3A); three genera were 
significantly different in rectum of Erhualian and 
Sushan pigs, and Streptococcus exhibited highly 
significant differences (Figure 3B); seven genera 
were significantly different in caecum and rectum 
of Erhualian pigs, and Christensenellaceae R-7  
exhibited highly significant differences (Figure 3C); 
four genera were significantly different in caecum 
and rectum of Sushan pigs, and Streptococcus and 

Figure 1. Venn diagrams of the operational taxonomic units (OUT)
EC – Erhualian pig caecum, ER – Erhualian pig rectum, SC – Sushan 
pig caecum, SR – Sushan pig rectum

Table 3. Richness and diversity estimates of 16S rRNA genes from the 
sequencing analysis in rectum and caecum of Erhualian and Sushan 
pigs

Sample
Species richness indices Species diversity indices
Sobs Chao1 Shannon Simpson

EC 649.4  ± 107.39 783.50 ± 85.99 4.39 ± 0.47 0.038 ± 0.032
ER 699.8  ±  32.39 819.68 ± 65.45 4.62 ± 0.15 0.023 ± 0.004
SC 755.4  ±  62.28 863.67 ± 76.95 4.94 ± 0.11 0.020 ± 0.005
SR 840.4  ±  52.33 963.03 ± 58.46 4.51 ± 0.17 0.068 ± 0.017
EC – Erhualian pig caecum, ER – Erhualian pig rectum, SC – Sushan 
pig caecum, SR – Sushan pig rectum
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Table 2. Tag number and length of the segmented samples in rectum 
and caecum of Erhualian and Sushan pigs

Sample  
ID

Total tag 
number

Total tag 
length, bp

Mean length, 
bp

Min length, 
bp

Max length, 
bp

EC-1d 61639 25431211 413 261 514

EC-2d 58044 24031647 414 328 514

EC-3d 56668 23591214 416 319 483

EC-4d 57618 23729682 412 254 463

EC-6d 72425 29913072 413 232 501

ER-1f 58732 24502833 417 317 483

ER-2f 57826 24081958 416 297 492

ER-3f 49790 20837327 419 327 465

ER-5f 69731 29145798 418 335 522

ER-6f 70596 29493081 418 321 445

SC-7 73715 30499096 414 219 509

SC-9 72662 30311299 417 245 458

SC-10 73502 30548412 416 216 436

SC-11 74671 31081964 416 234 444

SC-12 73643 30693287 417 269 434

SR-1 74642 31147919 417 258 520

SR-3 71455 29729693 416 220 463

SR-4 73513 30881879 420 214 473

SR-5 71684 29931980 418 270 432

SR-6 74163 31014432 418 231 478

EC – Erhualian pig caecum, ER – Erhualian pig rectum, SC – Sushan 
pig caecum, SR – Sushan pig rectum
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Figure 2. The community pieplot on genus level in rectum and caecum of Erhualian and Sushan pigs
EC – Erhualian pig caecum, ER – Erhualian pig rectum, SC – Sushan pig caecum, SR – Sushan pig rectum
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Figure 3. Phylotypes significantly different between EC and SC (A), ER and SR (B), ER and EC (C), SR and SC (D) groups at the genus level
EC – Erhualian pig caecum, ER – Erhualian pig rectum, SC – Sushan pig caecum, SR – Sushan pig rectum; statistical analysis was performed 
by the Student’s t-test; n = 5, in each group; * P ≤ 0.05, ** P ≤ 0.01 and *** P ≤ 0.001
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254  Intestinal microorganisms in pigs

Figure 4. Cladogram (A) and LDA (B) analyses of bacterial communities associated with different portions of intestines in Sushan and Erhualian 
pigs. Different-coloured regions represent different intestinal parts of two breeds (red, ER; blue, SR; green, EC; pink, SC). Circles indicate 
phylogenetic levels from phylum to genus. The diameter of each circle is proportional to the abundance of the group.
EC – Erhualian pig caecum, ER – Erhualian pig rectum, SC – Sushan pig caecum, SR – Sushan pig rectum
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h1 : f__Bacteroidales_RF16_group

i1 : g__norank_f__Bacteroidales_RF16_group

j1 : f__p-2534-18B5_gut_group

k1 : g__norank_f__p-2534-18B5_gut_group

l1 : f__unclassified_o__Bacteroidales

m1 : g__unclassified_o__Bacteroidales

n1 : p__Proteobacteria

o1 : c__Gammaproteobacteria

p1 : o__Pseudomonadales

q1 : f__Pseudomonadaceae

r1 : g__Pseudomonas

s1 : o__Enterobacteriales

t1 : f__Enterobacteriaceae

u1 : g__Escherichia-Shigella

v1 : p__Spirochaetes

w1 : c__Spirochaetia

x1 : o__Spirochaetales

y1 : f__Spirochaetaceae

z1 : g__Treponema_2

a2 : p__Fusobacteria

b2 : c__Fusobacteriia

c2 : o__Fusobacteriales

d2 : f__Fusobacteriaceae

e2 : g__Fusobacterium
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Alloprevotella exhibited highly significant differ-
ences (Figure 3D). Cladogram exhibited a distinct 
phylogenetic distribution of the bacterial lineages in 
different intestinal segments of Erhualian and Su-
shan pigs (Figure 4A). Indicator bacteria with LDA 
scores of 3.5 in bacterial communities were asso-
ciated with different intestinal parts of two breeds 
(Figure 4B). In rectum of Erhualian pigs, enriched 
bacterial groups included Treponema (genus), Spi-
rochaetes (from phylum to family), Prevotellaceae 
(genus), Ruminococcaceae (genus), Lachnospira-
ceae and Pseudomonadales (from order to genus). 
In rectum of Sushan pigs, enriched bacterial groups 
included Bacilli (class), Lactobacillales (order) and 
Streptococcaceae (from family to genus). In caecum 
of Erhualian pigs, Clostridia (from class to order), 
Ruminococcaceae (from family to genus), Allopre-
votella (genus), Christensenellaceae (from family to 
genus) and Enterobacteriales (from order to genus) 
were significantly enriched. In caecum of Sushan 
pigs, enriched bacterial groups included Fusobac-
teria (from phylum to genus), Bacteroidales (from 
family to genus), Peptostreptococcaceae (family) 
and Prevotellaceae UCG-003.

Sample comparison analysis. The bacterial 
community structures of different intestinal seg-
ments of the two breeds of pigs were clearly sepa-
rated, and two coordinates (PC1 and PC2) explained 
41.37% of the total variation of bacteria (Figure 5A). 
In addition, the Jensen-Shannon distance was calcu-
lated according to the abundance of the microflora 
at the genus level and clustered by PAM (partition-
ing around medoids) to obtain the optimal clustering  
K value of 3. Then, the PCA results were visually 
displayed. The analysis of microflora typing showed 
three types of intestinal microflora clustering  
(Figure 5B). Intestinal type 1 was the Streptococcus 
intestinal type, which was mainly present in rectum 
of Sushan pigs; intestinal type 2 was the Lactobacil-
lus intestinal type, which was mainly present in rec-
tum of Erhualian pigs and caecum of Sushan pigs; 
and intestinal type 3 was the Ruminococcaceae 
UCG-005 intestinal type, which was mainly present 
in caecum of Erhualian pigs.

Community function prediction and path-
way enrichment analyses. Using the present OTU 
data, PICRUS was applied to determine the poten-
tial pathway enrichment of intestinal samples via 
annotation against the KEGG database. In all sam-
ples, the majority of OTUs were assigned to 24 gene 
families, which were mainly involved in carbohy-
drate transport and metabolism, general function 
prediction, amino acid transport and metabolism, 
transcription, replication, recombination and repair, 

translation, ribosomal structure and biogenesis. 
Compared with breed composition, the COG func-
tional composition of all the samples was relatively 
similar. No significant difference was found in dif-
ferent samples (Figure 6). The prevalence of path-
ways at the KEGG 1 class level was similar among 
different samples, and their abundance values of 
metabolism were the highest (Figure 7A). The re-
sults of pathway level 2 revealed that relatively few 
microbial communities in rectum of Erhualian and 
Sushan pigs were involved in amino acid metabo-
lism, biosynthesis of other secondary metabolites, 
cell motility, cellular processes and signalling, ener-
gy metabolism, environmental adaptation, enzyme 
families, folding, sorting and degradation, genetic 
information processing, immune system, lipid me-
tabolism, metabolism of cofactors and vitamins, 
metabolism of other amino acids, nervous system 
and nucleotide metabolism. However, in rectum of 
Erhualian and Sushan pigs, the abundance values 

Figure 5. Principal coordinate analysis (PCA) plots (A) and microflora 
typing (B) of bacterial communities in rectum and caecum of Erhualian 
and Sushan pigs
EC – Erhualian pig caecum, ER – Erhualian pig rectum, SC – Sushan 
pig caecum, SR – Sushan pig rectum
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Figure 6. COG functional classification of intestinal microflora
EC – Erhualian pig caecum, ER – Erhualian pig rectum, SC – Sushan pig caecum, SR – Sushan pig rectum

Figure 7. Pathway count heatmap of bacterial community at the KEGG-1 class level (A) and KEGG-2 class level (B) in rectum and caecum  
of Erhualian and Sushan pigs
EC – Erhualian pig caecum, ER – Erhualian pig rectum, SC – Sushan pig caecum, SR – Sushan pig rectum
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of the digestive system were significantly higher 
than those in caecum of Erhualian and Sushan pigs.  
On the other hand, in rectum and caecum of  
Erhualian pigs relatively more microbial commu-
nities were involved in cell growth, cell death and 
the endocrine system than those in Sushan pigs  
(Figure 7B).

Discussion
The main function of intestinal microorgan-

isms is to help animals digest and utilize nutrients 
in the diet, assist host metabolism, make nutrients 
better used by animals, provide nutrition for intes-
tinal epithelial cells, strengthen their immune and 
disease resistance functions, and help the host resist 
the invasion of harmful pathogens (Kim et al., 2011; 
Thaiss et al., 2016). The main factors affecting the 
changes of intestinal microflora are the host itself, 
dietary factors and the interaction of microflora. 
Among them, the host itself is the most direct and 
important factor.

There are great differences in the structure of 
intestinal microflora and the abundance of micro-
flora among different breeds of pigs. Some studies 
have shown that the intestinal microflora of pigs is 
affected by the genetic background, and there are 
differences in the intestinal microflora of different 
breeds of pigs. Yang et al. (2014) found that the 
number of total bacteria, Firmicutes and Bacte-
roidetes in the faeces of Chinese local pig breeds 
(Bama mini, Meishan and Erhualian pigs), was 
significantly higher than that of Duroc pigs. Pig 
breeds had a significant effect on the structure of 
intestinal microflora of adult sows. Bama mini pigs 
had the most abundant intestinal microflora. There 
was a significant difference between Chinese lo-
cal pig breeds and Duroc pig breeds. Xiao et al. 
(2018) found that the microbial diversity in caecum 
and colon was higher than that in duodenum, jeju-
num and ileum in Jinhua and Landrace pigs. In this 
study, the diversity of intestinal microflora in two 
pig breeds was similar, but the abundance of spe-
cific intestinal microflora was different. The relative 
abundance of rectal microflora was higher than that 
of caecum, and there were differences between the 
two breeds. The abundance of rectal and caecum 
microflora in Sushan pigs was higher than that of  
Erhualian pigs, but the rectal microflora polymor-
phism in Sushan pigs was lower than that in Erhual-
ian pigs. The caecum microflora diversity in Sushan 
pigs was higher than that in Erhualian pigs. The 
above results indicated that the abundance and di-
versity of microorganisms in the pig intestine were 

highly correlated with breeds and specific intestinal 
segments.

At the phylum level, it was found that the 
dominant bacteria in caecum and rectum of Erhual-
ian and Sushan pigs were Firmicutes, Acidobacte-
ria and Bacteroides, but the expression abundance 
of different bacteria was different. Firmicutes and 
Bacteroidetes in Erhualian pigs were higher than 
those in Sushan pigs. Some studies have found that 
the abundance of Firmicutes in Jinhua pigs was 
higher than that in Duroc, Yorkshire and Landrace 
pigs, but the abundance of Bacteroidetes was lower  
(Pajarilla et al., 2014; Yang et al., 2018). Bacteroides, 
Firmicutes, Spirochaetae and Proteus were the domi-
nant flora in the faeces of Tibetan, Rongchang and 
Yorkshire pigs. The abundance of Firmicutes in Ti-
betan and Rongchang pigs was higher than that in 
Yorkshire pigs, but the abundance of Bacteroides was 
lower (Diao et al., 2016). Firmicutes and Bacteroi-
detes are associated with crude fibre digestion and 
carbohydrate degradation. The ratio of Firmicutes/
Bacteroidetes can reflect the host’s lipid metabolism, 
and a higher ratio will cause obesity and other com-
plications (Kim and Isaacson, 2015; Mathur and Bar-
low, 2015). This may be because Erhualian, Tibetan 
and Rongchang pigs are obese ones that have a strong 
ability to deposit fat and digest crude fibre.

At the genus level, it was found that the abun-
dance of Christensenellaceae, Ruminococcaceae, 
Alloprevotella, Phascolarctobacterium, Trepone-
ma, Bacteroides in Erhualian pigs was significantly 
higher than that in Sushan pigs, and the abundance 
of Rikenellaceae, Streptococcus, Prevotellaceaein 
in Sushan pigs was significantly higher than that 
in Erhualian pigs. The results of this study are dif-
ferent from previous ones. Guo et al. (2008) found 
that the abundance of Bacteroides in the obese pig 
is less than that in lean pig, and the increase of  
Bacteroides has a negative impact on body weight 
(Simpson et al., 1999; Dowarah et al., 2017). This 
may be due to the fact that Sushan pig is a new hy-
brid breed of Erhualian and Yorkshire pigs, and 
belongs to the obese pig. The abundance of Strep-
tococcus in rectum of Sushan pig was significantly 
higher than that in Erhualian pig. In this context, 
our results are not different to previous ones. Xiao 
et al. (2018) also found that the abundance of  
Streptococcus in jejunum, ileum and colon of  
Jinhua pigs was higher than that in Landrace pigs, 
indicating that Streptococcus has various speci-
ficity. Streptococcus is related to inflammation 
and diseases. Whether disease resistance of dif-
ferent pig breeds is related to the abundance of  
Streptococcus in the intestine remains to be studied. 
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Christensenellaceae, Ruminocaceae, Alloprevotella 
and Phascolarctobacterium are all closely related to 
fat deposition (Bian et al., 2016; Yang et al., 2018). 
Erhualian pig is a typical Chinese local obese pig 
with high-fat deposition ability. Whether these bac-
teria affect fat deposition in Erhualian pigs needs fur-
ther study. The results of this study further confirmed 
the existence of specific microbial community diver-
sity and abundance in different breeds of pigs. The 
microbial community diversity and abundance in the 
pig intestine were closely related to fat deposition 
and nutrient absorption of pigs.

Conclusions
In summary, comparisons between different 

intestinal segments of the two pig breeds showed 
distinct structural compositions and predicted func-
tions of microbial communities. Christensenellace-
ae R-7, Ruminococcaceae UCG-005, Alloprevo-
tella and Phascolarctobacterium were dominant 
in caecum of Erhualian pigs, which were associ-
ated with fat deposition and crude fibre digestion in 
pigs. These results may indicate that Erhualian pigs 
might have stronger fat deposition and crude fibre 
tolerance than Sushan pigs. Streptococcus number 
in the intestine of Sushan pigs was significantly 
higher than that in Erhualian pigs. Whether the 
stronger disease resistance of Sushan pig is related 
to the abundance of Streptococcus in the intestine 
needs further study.
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